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The presence of internal bubbles is a characteristic feature of thermoplastic products 
manufactured by rotational moulding. The bubbles in the mouldings are generally undesirable 
since they reduce strength and stiffness and impair the appearance of the product if they occur at 
the surface. The bubbles form as a result of powder particles coalescing during the heating stage 
of the process and they subsequently decrease in size as a function of time and temperature. This 
paper presents a semi-empirical model to predict the bubble size which is likely to occur under any 
specified processing conditions, 

Nomenclature  
ro Initial radius of bubble at time t = 0 (mm) 
r Radius of bubble at any time t (mm) 

Distance from the centre of the bubble at time 
t (mm) 

x Neck radius of two spheres (mm) 
"/ Surface tension (N cm-  1 ) 
P pressure inside the bubble (N cm-2) 
q Viscosity at time t (Nsm -2) 
qo Initial viscosity ( N s m  2) 
t Time 
K Experimental constant 

Apparent relaxation constant 
Q Quantity of oxygen in the bubble (cm 3) 

Diameter of the bubble (mm) 
qbo Initial diameter of the bubble (mm) 
pp Density of the polymer 

Pb Density of the bubble 
u Terminal velocity of the bubble 
9 Acceleration due to gravity 
J Solute flux 
c Concentration of dissolved oxygen in the glass 

at a distance ~, from the centre of the bubble at 
time t 

Co Constant concentration maintained at the sur- 
face of bubble in equilibrium with oxygen gas at 
1 arm inside the bubble 
Diffusion coefficient 

cs Concentration of solute in the sphere 
ci Concentration of solute in the solution at the 

sphere-solution interface 
coo Solute concentration at a large distance from the 

sphere 

1. I n t r o d u c t i o n  
Rotational moulding is a processing technique which 
competes with injection moulding, blow moulding 
and vacuum forming in the production of hollow 
thermoplastic articles. During the rotomoulding pro- 
cess, a relatively inexpensive mould is charged with 
a pre-weighed amount of plastic powder (or liquid) 
and then heated whilst being rotated about two per- 
pendicular axes in an oven [1]. The powder melts and 
adheres to the wall of the rotating mould, which is 
subsequently cooled whilst the biaxial rotation con- 
tinues. Finally, the mould is opened, the part removed, 
and the mould recharged for the next cycle. With the 
increasing demands on rotational moulding, there is 
a need for much better understanding of the basic 
technology of the process. Although rotomoulding 
appears simple, the plastic powder undergoes complex 
flow and melt processes. There are several major areas 
which are not well understood about the rotational 
moulding process. One of these is the formation of 
bubbles in the wall section of the moulding and their 
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subsequent removal as the melt/mould continues to 
rotate in the oven. The presence of bubbles in the 
moulding is a vital factor in the rotomoulding process 
because it has a major effect on the final properties of 
the product. In relatively thin products, the bubbles 
can be completely removed but this can result in 
polymer degradation due to the extended time or 
elevated temperatures which are required. Generally 
the moulder will set the cycle time such that some 
bubbles are retained and thus degradation is avoided. 
It has been shown conclusively that degraded material 
suffers a drastic drop in impact strength [2]. It is of 
considerable importance therefore to be able to pre- 
dict the size of bubbles likely to occur for any selected 
process conditions, in order that cycle times and prod- 
uct properties can be optimized. 

The presence of bubbles rotomoulded parts has 
been examined over many years [ t -6] .  A detailed 
analysis of bubble formation and removal during cen- 
trifugal casting of metals has been described by 
Spencer [7]. He concluded that when filling any 
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cavity, the trapping of gas pockets is unavoidable. He 
asserted that the bubbles are removed essentially by 
increasing the buoyancy forces. Thus, the larger 
a bubble, the greater its buoyancy and hence the faster 
it proceeds through the melt to the free surface. 

It is to be expected that the qualities of products will 
be at their best when all bubbles have been removed 
from the moulded parts [8, 9]. However, it has been 
found that there is a relatively sharp transition from 
ductile to brittle behaviour close to the point when the 
bubbles disappear. Most moulders tend to err on the 
side of caution and prefer to retain some bubbles in 
the final product. Although polyethylene is the major 
rotomoulding material, the problem of moulded-in 
bubbles is not restricted to this material. The problem 
has been found to be particularly bad in the polycar- 
bonate, nylon and ABS materials although predrying 
of the feedstock reduces the effects [10, 11]. 

There are many factors which have been identified 
as contributing to the presence of gas bubbles [3, 6, 
12 23]. These include particle shape and size, particle 
size distribution, melt flow index, volatiles, moisture, 
small pores in the mould surface, material degrada- 
tion, mould design, and the heating and cooling cycles 
during the rotomoulding process. 

Many authors have referred to the presence of 
bubbles in rotomoulded parts. However, only a few 
have made an attempt to. understand the problem 
[24-26]. Rao and Throne [24] suggested in early 
work that the formation of a homogenous melt from 
powder particles involves two distinct stages. The first 
involves the formation of interfaces and bridges be- 
tween adjacent particles with little change in density. 
Secondly, there is a stage of densification in which the 
interparticle cavities are filled with molten polymer 
which is drawn into the region by capillary action. 
Rao and Throne used this model to explain the "pock- 
marks" on the surface of mouldings. It was suggested 
that these are caused by the voids in the powder 
interior being pushed ahead of the melt front to the 
free surface. This work involved an analysis of buoy- 
ancy, capillary and hydrodynamic forces in relation to 
the surface tension forces which are opposing them. 

Ten years later, Progelhof et al. [25] developed this 
theory further. Their more modern theory suggested 
that as the powder is heated, the particles become 
sticky and adhere to each other, and upon further 
heating the particles fuse together or densify to form 
a unitized structure. As the heating process continues, 
the solid-melt interface moves upwards, the top of the 
free surface of the powder drops and eventually the 
powder completely melts. The voids appear to be 
a result of a bound inclusion of the space between 
individual particles, and the most striking point was 
the slow movement of voids to the free surface. There 
appeared to be some coalescence of the voids but with 
time the voids diminished in size. 

Kelly [26] also considered powder densification but 
in this case the approach was different. Kelly sugges- 
ted that air bubbles are trapped in the polymer during 
melting and decrease in diameter as the polymer melt 
temperature increases. The high viscosity of the melt 
prevents the movement of the bubbles. At a high 
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enough melt temperature, the air in the bubbles begins 
to dissolve into the polymer. Oxygen has about twice 
the solubility of nitrogen in polyethylene. At high 
temperatures, the oxygen is further depleted by direct 
oxidation reactions with polyethylene. The depletion 
of oxygen reduces the bubble diameter. The laws of 
surface tension dictate that the pressure inside the 
bubble has to increase as the diameter decreases. The 
increase in pressure forces the nitrogen to dissolve in 
the polymer, thus the bubble diameter is further re- 
duced and this chain of events repeats until the bubble 
disappears. As the cycle time increases, the bubble 
diminishes in size and the number of bubbles de- 
creases. At very long cycle times, the moulded part will 
have no bubbles. However, as indicated earlier, impact 
strength is found to be low because the polymer has 
oxidized presumably as a legacy of the oxygen in the 
bubbles [2]. 

Kelly [26] also refers to a critical bubble size above 
which the gases will not dissolve regardless of temper- 
ature or time because the surface tension forces cannot 
generate a high enough bubble pressure to help dis- 
solve the gases inside the bubble. Extensive experi- 
mental work by Crawford and Scott [6] has con- 
firmed the Kelly model. Using a video camera to 
record the formation and removal of the bubbles it 
was possible to derive an equation to predict the 
bubble size under isothermal conditions. This work 
has now been further refined to recognise that the 
formation/removal of the bubbles is in fact a 
time-temperature phenomenon and so a much more 
general equation has been proposed. 

2. Theory 
Once a gas pocket has formed inside the polymer melt, 
three main factors affect the rate of diameter decrease: 

(i) diffusion of the gas at the surface of the bubble, 
(ii) diffusion of this dissolved gas away from the 

bubble into the polymer melt and 
(iii) buoyancy forces on the bubble. 

It seems likely that at high temperature effect (i) is 
rapid, and what predominantly determines the overall 
rate of solution of the bubble is the diffusion of dis- 
solved oxygen away from the bubble. These three 
main factors will be described mathematically in the 
next section. 

2.1. Sintering 
To understand the bubble formation and removal 
mechanism, it is necessary to understand the process 
of polymer sintering and densification. A mathemat- 
ical treatment of the sintering process is described 
below. 

Solid particles, when in contact with each other at 
elevated temperatures, tend to decrease their total 
surface area by coalescence. This process, called sin- 
tering, is usually accompanied by a decrease of the 
total volume of the powder mass. A decrease in surface 
area brings about a decrease in (surface) free energy. 



Thus the surface tension is the predominant force for 
the coalescence process. 

Frenkel [27] was the first person to consider the 
concept of viscous sintering, and derived an expres- 
sion for the rate of coalescence of adjacent spheres 
under the action of surface tension. From the model 
given in Fig. 1, he developed a theory which predicts 
the variation of the sintering process with time for two 
identical spheres. The Frenket expression takes the 
form 

apparent relaxation constant to be assigned from ex- 
perimental determinations to account for both in- 
herent and stress-induced retardation. 

As the sintering proceeds and coalescence and 
densification occur, the overall heat conduction prob- 
lem does not remain unaffected. Clearly, the effective 
thermophysical properties change, influencing the 
overall temperature distribution, and hence the local 
sintering problem as well. 

x2 _ 3 ( ~ )  
r 2 t (1) 

where x is the neck radius as represented schemat- 
ically m Fig. 1, r is the radius of the spheres, 7 is the 
surface tension, q is the viscosity and t is the time. This 
relationship has been confirmed by Kuczynski and 
Zaptatynsk3,j [28] for the sintering of glass. For  the 
second stage of the sintering process, normally de- 
scribed as densification, these authors were able to 
derive an equation of the form 

7t 
r0 - r - (2) 

2q 

where ro is the initial radius of the pore and r is the 
reduced radius at time t. This expression was applied 
successfully to glass and ceramic materials, but for 
polymeric materials Kuczynski et al. [29] and others 
[30-34], working with polymethylmethacrylate, 
found that the experimental data conformed to the 
general expression 

= K(r)  (3) 

where K is an experimental constant, T the temper- 
ature, t the sintering time, r the radius of the PMMA 
sphere and x the radius of interface. The exponent 
n decreases from 5 to approximately 0.5 as the sinter- 
ing temperature increases from 127 to 207 ~ 

In 1962, Lontz [35] studied the sintering of poly- 
tetrafluoroethylene and suggested that for viscoelastic 
sintering, the time-dependent interracial(x/r)  coales- 
cence should be more properly described as 

-( ) x 2 3 7t "/~) (4)  

r 2 qo(1 - e 

where qo represents the initial viscosity and ~ is an 

Figm~ 1 Model for sintering concept. Two spheres of radius r form 
a contact area of radius x. 

2.2. Mathematical treatment of the 
diffusion of gas from a spherical 
bubble into the surrounding 
polymer 

The rate at which a gas bubble in a polymer at con- 
stant temperature shrinks or expands may be assumed 
to depend on the rate at which the gas dissolves in the 
polymer melt at the surface of the bubble or is evolved 
from the polymer into the bubble. 

As the temperature of the polymer melt increases, 
the oxygen in the air bubble begins to dissolve in the 
polymer. As stated earlier, oxygen has about twice the 
solubility of nitrogen in polyethylene. At the higher 
temperature, the oxygen is further depleted by direct 
oxidation reactions with polyethylene. The depletion 
of oxygen reduces the bubble diameter and increased 
the pressure in the bubble. The laws of surface tension 
dictate that the pressure inside the bubble has to 
increase as the diameter decreases. Hence 

where P is the pressure inside the bubble (Ncm-2) ,  
7 is the surface tension (N cm-  1) r is the radius of the 
bubble (mm) and K is a constant. It can be seen that 
the increase in pressure in the bubble due to surface 
tension is inversely proportional to the diameter of the 
bubble. 

The radius r of the bubble at any time t with 
a bubble of initial radius ro is determined by the 
diffusion constant ~ of dissolved oxygen in the poly- 
mer and by the solubility Co of oxygen at 1 atm in the 
polymer, measured above the initial uniform concen- 
tration of dissolved oxygen. The differential equation 
for the diffusion of oxygen away from the bubble is 
given by Fick's law. 

Oc 
- o~V2c (6)  

St 

where c is the concentration of the dissolved oxygen at 
a distance from the centre of the bubble at time t and 
c~ is the diffusion coefficient. It should be noted that 
Fick's diffusion law is for a single bubble in an infinite 
liquid. In reality there are many bubbles in close 
proximity and this may affect the diffusion mech- 
anism. 

If the problem is referred to a system of spherical 
coordinates with the origin at the centre of the bubble, 
it is evident that the concentration of dissolved oxygen 
does not depend on the angular coordinates but only 
on the distance ~ from the centre of the bubble. Thus, 
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the diffusion equation reduces to the form 

ac a2(ct)  

where t is the distance from the centre of the bubble. 
This equation is to be solved subject to the bound- 

ary condition that c is equal to Co on the surface of the 
bubble at all times. Here the complication arises that 
the radius of the bubble, r, on which this boundary 
condition c = Co holds, itself decreases with time in 
a way which depends on the solution of the diffusion 
problem. This is a type of problem known as a Stefan 
problem. 

An approximation has been made by Greene and 
Gaffney 1-36] by imagining that oxygen is supplied to 
a bubble in some unspecified way for a time t at such 
a rate as to maintain the size of the bubble. For this 
diffusion problem where r, the radius of the bubble, is 
a constant, the exact solution may be obtained from 
standard tests. It is 

c0 [ ,8, c - ~ 1 - exp ~-(~i/5) 

where c is the concentration of dissolved oxygen in the 
glass at a distance ~ from the centre of the bubble at 
time t, Co is the constant concentration maintained at 
the surface of bubble in equilibrium with oxygen gas 
at 1 atm inside the bubble, r is the radius of the bubble 
and ~ is the diffusion coefficient. 

At any time t, the rate at which oxygen leaves the 
bubble is determined by the concentration gradient at 
the surface of the bubble: 

dQ otA(~,c'~ dt - \~tJ~r  (9) 

Here Q is the quantity of oxygen in the bubble meas- 
ured in cm 3 at the temperature of the experiment, c is 
the concentration of dissolved oxygen, which is meas- 
ured in cm 3 of gas at the temperature in question per 
cm 3 of polymer. A is the surface area of the bubble 
which is equal to 4rtr 2. 

The concentration gradient at the surface is ob- 
tained by differentiating Equation 9 with respect to ~: 

~=r - Co + (rr~7)~a (10) 

Since the quantity of oxygen contained in the bubble, 
Q, is equal to 4rcra/3, Equation 5 will give the rate at 
which the bubble would start shrinking if the imagin- 
ary internal supply of oxygen, which previously main- 
tained its radius constant at r, were suddenly cut off at 
time t. If it is now assumed that the concentration 
gradient of a bubble which has actually shrunk to the 
radius r at time t is the same as that of a bubble which 
has been maintained at radius r by an internal supply 
of oxygen for the same time t, then a differential 
equation connecting the radius of the shrinking 
bubble r with the time may be obtained. This approx- 
imate solution of the Stefan problem is 

d 4 3 = 1 ~t(~ rtr ) ~162 

(11) 
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or 

drdt ~Co + (~cu)1/2 (12) 

Equation 12 may be solved by standard methods and 
the constant of integration evaluated by setting r equal 
to the initial radius of the bubble ro at t = 0. If co, the 
solubility of oxygen in the polymer, measured in vol- 
ume of gas per volume of polymer is less than 2rt, the 
resulting equation for r as a function of t is 

+ y /2  In@ e 2c~ -Jr- 2Co(~ ) -~ 2(~-c~~ Co// 

x C e o t - 1  ( c ~  ~- -Co/  A \ c ~  2 + 1 =21nro  

(13) 

when t is small so that r >> (rc~t) 1/2 Equation 12 has an 
approximate solution 

2Co (~f]l/2 
r = ro ~72,  , (14) 

This same limiting form for small values of t may be 
obtained by expanding the In and cot-1 functions in 
Equation 13. When r becomes small, another limiting 
solution of Equation 12 may be obtained which is 
useful in plotting Equation 13. It has the form 

r 2 = k - 2rt~zt (15) 

Equation 12 evidently leads to a decrease in bubble 
size proportional to the square root of time in the 
initial stages of the shrinking of the bubble, followed 
by a more and more rapid shrinking in the later stages. 

Unfortunately, this approximate solution may be 
shown to predict shrinking which is too rapid in the 
later stages of dissolution of a bubble. This may be 
seen by considering another approximate solution of 
the problem. In this case it is supposed that the ori- 
ginal bubble of radius ro loses gas by diffusion for time 
t. If it is then allowed to shrink suddenly to radius r, 
conservation of polymer volume will cause the sep- 
aration A t between concentric spherical surfaces of 
radius ~ and t + At on which the concentration of 
dissolved oxygen are c and c + Ac to increase in pro- 
portion to the square of the reciprocal of ~. Hence the 
concentration gradient at the surface of the bubble 
will decrease in proportion to the square of its radius. 
Then 

= - Co + (rtaT-)l/e ~ (16) ~_ = r ro 

This yields a differential equation for r as a function of t 

dr Coa//1 1 ) 
dt -- ~ k ~  "~ (7~;) 1/2_ r2 (17) 

which has the solution 

1 1 _  Co st[- 2 ( ~ ) 1 / 2 1  
r ro 7o1_7o + (18) 

These two approximate solutions illustrate the effects 
of two opposing influences on the rate of solution of 
oxygen from the shrinking bubble. Equation 13 takes 



into account the increasing ratio of surface to volume 
as the bubble becomes smaller, which causes the 
shrinking to become more rapid. Equation 18 takes 
into account the decrease in concentration gradient at 
the surface of the bubble which also results from its 
contraction, but which causes the shrinking to become 
slower. The net effect of both influences may then be 
expected to cause the shrinking of the bubble to follow 
rather closely the course predicted by Equation 14 for 
a large part of its life. 

Presumably, the solubility of oxygen in the polymer 
decreases as the temperature is increased. This would 
mean that the factor Co in Equations 13 and 14 de- 
creases. If the process is diffusion-limited, this means 
that there is a sufficient increase in ct, aided by the 
absolute temperature factor, to overcome the effect of 
Co and result in a net increase in the rate of shrinking 
of the bubbles. 

From the foregoing, it is evident that more work is 
needed, extending over a greater temperature range 
and with more attention to the critical points in the 
history of the bubble (i.e. to the initial slow period and 
to the point when shrinking stops and the residual 
bubble remains). Some technique for recovering and 
analysing the residual bubble of insoluble gas also 
would be most desirable. 

2.3. The  b u o y a n c y  fo rce  of a b u b b l e  
The bubble, having formed, remains virtually station- 
ary in the melt. A force analysis on the bubble shows 
that this is a reasonable statement: 

Buoyancy = weight of bubble + resisting force 

6 p p g  = ~ - P b g  4- 3nqoU~ (19) 

where ~ is the diameter of the bubble, pp the density of 
the polymer, 10b the density of the bubble, q0 the 
zero-shear viscosity of the polymer, u the terminal 
velocity of the bubble and g the acceleration due to 
gravity. Crawford and Scott [6] assumed a typical 
bubble diameter of 0.25 x 10- 3 m and found that the 
viscosity of the molten polyethylene is so large that the 
buoyancy forces acting on the bubble are insignificant. 

3. E x p e r i m e n t a l  w o r k  
Using a hotplate system and video camera as de- 
scribed by Crawford and Scott [6], a series of tests 
were conducted to observe bubble formation and re- 
moval for a wide range of times and temperatures. The 
experimental apparatus consisted of a Tecam Dri- 
Block DB-4 hotplate coupled to a Eurotherm 812 
microprocessor-based programmable controller as 
a steady heat source and a steel ring (95ram dia., 
50 mm high) with a mild steel baseplate to contain the 
powdered plastic. This container had a small section 
at the front removed to permit the insertion of a glass 
viewing window. The window permitted the powder 
to be observed over the whole container depth. K-type 
(NiCr-NiA1) thermocouples were used to monitor the 
temperatures at heights of 3, 6 and 15 mm from the 
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Figure 2 Experimental curves for bubble diameter ratio for hd- 
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Figure 3 Experimental curves for bubble diameter ratio for LL- 
8461.27 resin: (IN) 150 ~ ( + ) 170 ~ ( , )  200 ~C. 

baseplate in the powder/melt. A thermocouple was 
welded directly to the surface of the baseplate to 
record the true rates of heating experienced by the 
powder. A video camera system was set up to record 
the melting and homogenization of the plastic powder. 
The size of bubbles, general bubble content, rate of 
dissolution/disappearance, temperatures at base and 
at different heights can all be measured very conveni- 
ently using this equipment. 

The most suitable plastic for rotational moulding is 
polyethylene, due to its inherent thermal stability, 
excellent processing properties and low cost. Hence 
polyethylene was chosen as the material for the initial 
investigations of the bubble formation problem. Two 
grades of polyethylene were chosen: (a) high-density 
polyethylene. HD-8760.27 (lot 301-969) and (b) linear 
low-density polyethylene LL-8461.27 (lot 304-266), 
both supplied by Exxon Chemical International Mar- 
keting Inc. in Canada. The experimental data for 
bubble diameter as a function of time are shown in 
Figs 2 and 3. 

4. Discussion and mathematical 
analysis 

It can be seen from Figs 2 to 7 that the diffusion of the 
bubble into the polymer melt can be expressed as 
a function of temperature, time and initial bubble size. 
Initially, the bubble decreases in size at a relatively 
slow rate, but as the bubble diameter decreases, the 
area to volume ratio increases. This causes the pres- 
sure inside the bubble to increase and hence the dif- 
fusion process is assisted so that the rate of decrease of 
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Figure 5 ( - - )  Prediction curves with experimental data (symbols) 
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Figure 6 ( - - )  Prediction curves with experimental data (symbols) 
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diameter is accelerated. In order to quantify the effect 
of these variables, it is worth referring to the work by 
Doremus [37] and Green and Gaffney [36] who 
studied the diffusion of bubbles into glass. They found 

that the rate of  shrinkage of the bubble was controlled 
by the diffusion of oxygen into the molten glass. 

Greene and Gaffney [36] reported that there ap- 
pears to be no rigorous solution of the diffusion equa- 
tion for the case of a growing or shrinking sphere that 
has an appreciable initial radius. However, they found 
the bubble diameter was proportional to the square 
root of the time (see Equation 15). 

Doremus [37] developed a modified form of the 
Green and Gaffney relationship. His primary interest 
was with the isothermal experimental state and he 
considered a sphere of radius ro at time t = 0 sur- 
rounded by a large amount  of solution with a uniform 
solute concentration Co. Under certain conditions the 
sphere will expand or contract with time. The radius 
of the sphere at time t is r. He made the following 
assumptions in order to derive the growth equations: 

1. Diffusion of solute in the solution is the only 
process that affects the rate of growth or contraction 
of the sphere. 

2. The concentration of solute in the sphere c~ is 
uniform and constant with time. 

3. The concentration of solute in the solution at the 
sphere-solution interface, ci, is uniform and constant 
with time. 

4. The solution is large enough so that the solute 
concentration at a large distance from the sphere coo 
equals Co(Ca = co).  

5. The diffusion coefficient cz of the solute is con- 
stant with concentration and time. 

Under these conditions the solute flux J per unit area 
and time at the surface of an isolated sphere of con- 
stant radius ro is given [38] by 

j (ca - -  Ci)~ 1 + (20) 
?'0 

with Co = ca.  For a growing sphere of zero initial 
radius in a dilute solution the rigorous result [39, 40] 
for J is 

(Cco --  Ci)~ 
j = (21)  

r 
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A plausible equation for a growing or shrinking 
sphere of initial radius ro is therefore 

( j _ ( c a - c O D  1 + (22) 
r 1/2 

in which r is now the total instantaneous radius of the 
sphere at any time t. This equation approaches Equa- 
tion 21 when ro is small or t is large and approaches 
Equation 20 when r is nearly equal to to. For the case 
of a growing sphere, it can be seen that the present 
equation is preferable because the second term 
in parentheses should become negligible when ro 

( ~ D t )  1/a. Since J = (cs - c i ) d r / d t ,  from Equation 
22 the integrated growth equation is 

( r 2 - -  r 2 = 2D13t 1 + ( r c D t ) l / 2 j  (23) 

where 13 = (ci - c ~ ) / ( c ~  - ci); ro is the initial radius of 
the bubble, r the total instantaneous radius at any 
time t, ~ the diffusion coefficient and 13 the dimension- 
less gas concentration constant. 

Ifro ~ (g~t)  1/2, as in the case for polyethylene [41], 
then the second term in parentheses becomes negli- 
gible and Equation 22 reduces to 

4)2 _ 4)2 = K i t  (24) 

where KI is a constant, K~ = 8~13 and 4)0 is the initial 
diameter. Rearranging gives 

~ o  = 1 - K2t  (25) 

where K 2 is a constant, K 2 = 8~13/4) g. 
Doremus [37] also found that the diffusion coeffi- 

cient has a temperature dependency 

 oexp( ) 
where So is the diffusion coefficient at time t = 0. So 
from Equation 25 

, o  t = 1 - K 3  

where 4)0 is the initial bubble diameter, 4) is the bubble 
diameter at time t and K3, K4 are constants. 

It can be seen that the intercept is not in fact 1, 
although it is quite close to it. From the mechanism of 
bubble formation and removal and curve-fitting ana- 
lysis of data obtained in the series of tests on polymers, 
it was found that for a gas bubble in a polymer melt it 
is probably more accurate to say that the following 
type of relationship applies: 

(~00) 2 = K 5 - K 2 t q -  K6 t2 (28) 

where K6 is a constant, so the proposed model to 
determine the bubble size decrease with temperature 

and time is 

  exp( 
where Ks, K7 and Ks are constants. These constants 
are affected by the type of polymer, melt flow index, 
particle size, shape and particle size distribution, 
moisture, bubble initial diameter, temperature and 
heating rate. 

In order to test the theory with regard to the nature 
of the above equation, a sophisticated data analysis 
package [42] was used to establish the "goodness of 
fit" and the appropriate constants when it is applied to 
the data in Figs 4 to 7. The computer program used 
for this data analysis incorporates a number of effi- 
cient optimization algorithms, as well as non-linear 
for sensitivity analysis and for plotting solutions. 
However, its effectiveness stems from the facility it 
provides for monitoring and controlling the solution 
process, for example by scaling or by changing the 
dimension of the problem, and also from the ease with 
which possible solutions can be analysed and verified. 
In the present case, the problem was so ill-conditioned 
that re-scaling was absolutely essential. Without it, the 
best fit obtainable had a sum of squares of residuals of 
about 106; by scaling all parameters to have equal 
magnitude in the optimization space this was ulti- 
mately reduced, in the case of EL-8461, to 0.054. Until 
it was reduced well below 1.0 no temperature effects 
were distinguishable, due to the low sensitivity of K4 
and K~ compared with the other parameters. 

Once the values of K3, K4, Ks, K7 and K8 had been 
determined, the computer program was used to pre- 
dict bubble size for temperatures and times outside 
those in the experimental programme. For example, 
the prediction curves for 110, 125, 140, 155 and 175 ~ 
for HD-8760.27 are shown in Fig. 4. The prediction 
curves for 120, 145, 160, 175 and 190 ~ for LE-8461.27 
are shown in Fig. 5. This model-fitting analysis can 
also give a prediction of bubble diameter ratio 
decrease rate versus temperature at any time. 
Fig. 6 shows the prediction curves for HD-8760.27 
resin at 72, 100, 129, 196 and 269 s. Fig. 7 shows the 
prediction curves for LL-8461.27 resin at 110, 195, 
260, 310 and 450s. 

Another four hotplate tests were done to identify 
the prediction curves. The tests were conducted at 140 
and 175~ for HD-8760.27 resin and at 160 and 
190 ~ for EL-8461.27 resin. The results are shown in 
Figs 4 to 7. 

5. Conclusions 
1. The rate of decrease of bubble diameter is de- 

pendent on the initial size of the bubble, the temper- 
ature of the melt, time, the type of polymer and the 
quantity of resin in the mould. 

2. From the work reported here using the tech- 
niques described above, a semi-empirical relationship 
between bubble diameter ratio, temperature and time 
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has been developed. For HD-8760.27 this takes the 
form 

= 1 . 0 6 5 -  T (~oo) 2 O.0486exp( 4.22x 102)t 

0"639~t2 (30) - -  1.487 x lO-6exp ~ // 

and for LL-8461.27 

= 0.968 - 2.844exp T t 

0.932"~ 2 
- 0.563 x lO-%xp ~ )t  (31) 

3. Extensive experimental trials have shown that 
once formed, the bubbles exhibit practically no move- 
ment to the free surface. This is explained in terms of 
the high viscosity of the polymer relative to the buoy- 
ancy forces. 
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